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ABSTRACT

This paper discusses novel methods for observing the spreading and penetration behaviour of fluids into specially prepared
consolidated blocks of paper coating pigments which allows for the equilibrium absorption of measurable droplet sizes
without saturation of the pigment layer. The mechanisms studied are responsible for a range of printing phenomena.
Variables such as particle size distribution, pigment surface treatment with dispersing agents and the applied pressure during
consolidation of the structure give the possibility to create a wide range of porous structures with differing structure-property
relationships. By bringing liquids of differing polarity, surface tension and viscosity, stained and unstained, into contact with
these porous blocks, either as a super source or in droplet form, the relevant phenomena of spreading, penetration and
adsorption can be studied using image analysis techniques. Droplet absorption and pressureless fluid imbibition methods are
contrasted to study the influence of surface free energy of the solid and liquid phases in combination with a given pore
system and mo delled geometry evaluated using mercury porosimetry and a pore structure modelling software (Pore-Cor).
This software generates a three-dimensional pore network matching the experimental percolation characteristics and porosity,
and giving some characteristic structural parameters modelling the structure in terms of pores and access throats. Results
show that there is a discontinuity in the relationships between relative compaction, pore size distribution and the volume of
liquid absorbed as a function of penetration depth which in turn can be significantly less than the volume measured by
intrusion porosimetry in the case of droplet imbibition compared with saturation by super source imbibition. Identifying that
this discontinuity cannot be readily modelled with the simple geometry of cubic pores with cylindrical connecting throats
provides for potential mechanisms to be postulated and the future studies necessary to test these mechanisms to be defined. In
practice these discontinuous absorption volume controlling mechanisms are seen as contributing factors to the different offset
printing properties of gloss and matt papers in relation to fountain solution absorption and ink tack development and decay,
and hence print abrasion, and when inhomogeneously distributed on a coated surface may be one of the most common causes
for print mottle in modern coated papers.
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INTRODUCTION

The basics of fluid/porous solid interactions are fundamental to many natural and industrial processes. Many desired and
undesired phenomena are dependent on the dynamics of this process and it continues to challenge many researchers to
investigate paper absorption mechanisms in further detail. A major requirement for paper is a uniform distribution of the
absorption controlling parameters over the surface otherwise a pattern of different print density or gloss becomes obvious as a
mottling effect (1, 2).

In the manufacture of paper, pigments for coating and filling hold one of the key functions in the processes of adsorption,
spreading and absorption into the porous structure. When a droplet of printing ink, e.g. from an office ink jet printer, comes
onto the paper surface the final printing result in terms of colour setting, intensity and detail accuracy is strongly dependent
on how far the droplet penetrates in connection to the spreading on the paper and where the ink pigment particles or dyes are
deposited and in which time order this happens (3, 4, 5, 6, 7, 8, 9, 10, 11).

In previous studies many contributing factors have been analysed. In general, the approach has been based on porosity and
pore size distributions obtained using mercury intrusion porosimetry (12, 13). When using this method two limitations should
be corrected in the case of coating structure analysis as described by Gane et al. (14), namely, the compressibility of the
sample and more importantly the shielding effect of small pores or throats which can prevent the intrusion of mercury at a
given pressure into a pore of relevant size according to the straightforward Laplace equation. The porosity itself gives
insufficient information about liquid uptake characteristics. A primary determining factor for non-pressure driven imbibition
is the contact angle and therefore the interfacial energy relationships between the imbibed fluid and the microscopic surface
continuity/discontinuity of the pore structure network. If the solid surface adhesion forces to the liquid are much weaker than
the fluid cohesivity, resulting in a locally high contact angle, pore entry may be prevented even for very porous samples.
Direct measurements of solid surface free energy on the truly microscale are extremely difficult. In the literature many
attempts are reported to study wetting characteristics through the related contact angle (15) but in reality they are influenced
by surface roughness, adsorbed materials, contamination and crystallite orientation. Among others, also inverse gas
chromatography (16), cleavage energy (17) and a thin-layer wicking technique (18) have been used to obtain further
information on this topic. Additionally, it is postulated here that in the case where the cohesivity within a fluid is weaker than
the adhesivity of the fluid to the solid substrate, the potential for exceeding the yield point of the meniscus is given and the
fluid progress into the structure is controlled by competitive imbibition.

The rate of offset ink tack increase is a common measure of ink solvent removal by the paper and the subsequent ink curing
(19, 20). More recently, ink particle and dye deposition have also been studied, mainly related to ink jet applications,
considering chromatographic separation of the ink (5). Also attempts to link light scattering properties to porosity
measurements are reported (1, 21).

Oil absorption has been contrasted to mercury porosimetry to support the use of intrusion methods to describe the relevant
pore structure of a coating for imbibition (22, 23, 24, 25). One problem which we identify from our study here is the
definition of the oil, particularly the degree of non-polarity, and this is discussed in respect of a super source method which
samples the pore volume accessed by a variety of liquids. Although not affecting the results in this study it may impact some
important solid-liquid interactions.

Many valuable investigations have been performed directly on paper surfaces or on model coating layers. However, if we
consider that a paper coating has a thickness, depending on grade, of between 5-15 µm, and a practical single ink layer is
typically 0.25 µm (or in total on a four colour press ~1µm), it is to be expected that using even volumes as small as a
micro litre directly onto such a microscopic surface volume is distinctly limited by saturation phenomena when it comes to
understanding the complexities of coating imbibition. We decided to step away from thin coating layers, because of these
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limitations, and to consider the possibility of using macroscopic blocks of consolidated pigment formed over a range of
compressions which allow for the equilibrium absorption of measurable droplet sizes without saturation. It has been possible
to investigate in detail the competition between surface spread and capillary absorption and the relationship of initial pore
filling to factors such as surface chemistry and geometry of the pigmented pore structure as a function of sample
compression.
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Fig. 1 Schematic of the overview of the present and future approaches used in this work.

Combining the findings of the droplet and the super source method and by contrasting them to the results of mercury
porosimetry our target is also to advance the existing Pore-Cor† software (26) to a stage where three-dimensional pore
geometry together with discontinuous pore wall surface energy distribution is modelled to simulate natural fluid imbibition
and separation characteristics - as summarised in Fig. 1. In the present state the Pore-Cor model fails to predict discontinuous
phenomena reported in this work. These findings are used to discuss the likely origins of the novel findings and proposals are
made for the future modification of the model to elucidate these mechanisms.

SPREADING AND ABSORPTION MECHANISMS

Generally when a droplet of liquid contacts a porous surface two competing mechanisms start to act: spreading on the
exposed surface and penetration/absorption into the porous structure. The distribution and wet adhesion of the fluid phase on
the solid material at and within the porous structure surface are determined by many factors (27). Any force that acts at the
microscopic interface between fluid and solid will influence the characteristic behaviour of spreading on a microscopic
surface. The geometrical arrangement of these microscopic surfaces combine to control the spreading seen on the
macroscopic scale. The same forces interact also with the fluid on the capillary walls of the mutual pore system and
determine the penetration micro mechanics which couple together with the geometrical parameters of the capillary network to

                                                                
† Pore-Cor is a software name of the Porous Media Research Group of the University of Plymouth, U.K.
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determine the larger scale pore filling characteristics. The right balance between spreading and penetration/absorption
influences whether the desired process will be successful or not. Details describing solid/liquid interactions are found in the
literature (17, 28, 29). For example, so-called ink bottle pores do not allow the air to escape as liquid enters. Also, if the
liquid meniscus curvature determining the driving Laplace pressure,

capillaryr
cos  2  P θγ=∆ (eq. 1)

where γ is the surface tension of the liquid and θ is the contact angle, is equal to zero, no capillary entry occurs. In this
situation within a porous structure no further imbibition proceeds without applying an external pressure gradient. Pores with
strong diverging wall geometries may act as imbibition stoppers or lead to a splitting of the wetting liquid penetration front
(30). Many extreme configurations are imaginable which terminate the capillary uptake but in reality are assumed to be of
negligible importance due to small edge defects and roughnesses which are always present in real systems.

CHOOSING TEST LIQUIDS

A review of recent publications (31, 32) on printing inks and the study of standard tests indicates the following main liquid
components of printing inks:

Rotogravure Flexo Offset News Ink Jet

Solvents and
oils

Toluene
Xylene
Ethylacetate

Water
Ethanol
Ethyleneglycol
Propyleneglycol
Ethoxy- and methoxy-
propanol

Saturated short
Alkanes from
Mineral oil
fractions
Linseed oil

Mineral oils

new:
Oils from soy
and linseed

Water
Ethylene-
glycol
Diols
Pyrolidone

Solid
components
(waxes and
resins)

Polyethylene
Waxes
Natural Resin
Talloresin
Nitrocelluloses
Maleic-
polyacrylic-
vinyl resins

Maleic-, polyamide-, vinyl
resins

Monoester of
Fatty acids
Alkyd resins

Waxes
Bitumen
derivates
Natural resins

Dyes Alkali dyes Direct dyes
Acidic dyes

Table 1 Overview of typical ink compositions [ink pigment size is in the range of 0.05 - 0.5 µm].

Many of these fluids are blends of different sub-components. Some of them contain dissolved or dispersed solids. Of each
family of liquids we chose one typical representative in its chemically pure form. These are shown in table 2 together with
some additional liquids with typical values in surface tension, viscosity and polarity selected to cover the imaginable range of
fluids likely to absorb into a pigment layer. To complete the table, viscosity and surface tension of some of the relatively
unknown fluids were measured in the lab (*). Viscosity was determined with a StressTech®‡ rheometer performing a small
ramp of shear rates. Surface tension was measured with a Krüss Digital Tensiometer K10T.

                                                                
‡ StressTech® is a product name of ReoLogica Instruments AB, Lund, Sweden
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Surface
tension
/ mN/m

Viscosity
at room

temperature
/ mPas

Dielectric
constant

Boiling point
/ °C

Polarity

Water 72 1.056 80.18 100 high

Glycerol 63 1490 42.5 138-140 medium
Ethyleneglycol 48 19.9 37/25 195-197 medium

Linseed oil (*) 35 33.1 n.a. n.a medium

Toluene 29 0.71 2.379/25 110-111 low
Squalane (*) 29 38.8 n.a. 350 very low

Nonane 22 0.59 1.972/20 150-151 negligible

Table 2 Properties of the test fluids.

Squalane (2,6,10,15,19,23-Hexamethyltetracosan, Perhydrosqualane) a derivate of an extract from shark liver was chosen
because it is one of the few available long-chain liquid alkanes of medium viscosity which is chemically pure.

H3C

CH3 CH3 CH3

CH3 CH3 CH3

CH323 19 15
10 6 2

Fig. 2 Chemical structure of squalane.

Linseed oil was chosen to represent a vegetable oil relevant to the recent revival of the use of natural oils in printing ink
formulations (33). Because its main components, namely triglycerides of linolic-, linoleic- and oleic-acid, are uncommon in
chemically pure form we chose to work with the natural oil. An important difference to typical aliphatic alkane-based mineral
oil is the more polar (dipole) character due to the double bonds and carboxy groups (Fig. 3). In the context of this work, the
term apolar is therefore only used for the aliphatic alkanes.
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Fig. 3 Chemical structure of trioleine, triglyceride of oleic-acid.

Toluene is included representing the typical rotogravure solvent. Ethyleneglycol , as a component of flexo inks, is one of the
few liquids with a surface tension within the mid-range of ~ 40-50 mN/m.

The dipole moments of the liquids can be measured over a specified range of oscillator frequencies, but values are not
generally available. The polarity of the bulk liquid is a less well-defined term associated with dipole moment, but is also
dependent on other properties such as molecular polarisability, intermolecular hydrogen bonding and the entropy of the liquid
(34, 35). A useful qualitative estimate of polarity can be made by inspection of the molecular structure. The small size and
large dipole moment of water molecules give the liquid a high polarity. The substituent groups within glycerol,
ethyleneglycol and linseed oil give these liquids a medium polarity. In squalane, the small local dipole moments of the
methyl groups, together with the random C-C orientations within the backbone of the molecule, give it a very low but non-
zero overall polarity. The polarity of nonane, which has no substituent groups, is caused only by distortions of the carbon
backbone and is therefore negligible.
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EXPERIMENTAL TECHNIQUES AND RESULTS

Preparation of dry pigment tablets

A method has been developed to investigate the spreading and penetration behaviour of fluids as used in the printing of
coated paper, derived from an extension of the preparatory work of Schoelkopf in support of the studies made by Penannen
(36), in which macroscopic blocks of mineral coating pigments are formed. The formation of compressed structures was also
described by Ridgway et al. (37) for lactose.

For the preparation of these pigment blocks a cylindrical hardened steel die attached to a baseplate with a single acting upper
piston is used which is suitable for a wide range of pigment particle sizes, chemistries and morphologies. The die is divisible
into two parts to aid removal of the compacted pigment sample and the walls of the die are protected with a strip of plastic
film to prevent sticking of the powder to the wall and to reduce edge friction (Fig. 4).

cylinder

base part

piston

cellulose membrane

strip of plastic film
pigment powder

cellulose  membrane

Fig. 4 Schematic cross-section of the die showing the plastic lining and cellulose membrane.

Briscoe and Rough (38) reported non-uniform packing densities in highly compacted powders induced by wall friction
effects. For this study we considered this effect to be negligible because of the relatively lower pressure ranges adopted here
and the broader particle size distributions of coating pigments result fortuitously in a certain micro-heterogeneity of the
tablet. This micro-heterogeneity in turn accommodates for likely stress release within the tablet leading to a macro-
homogeneity which is clearly monitorable by the droplet shape on the tablet surface after the surface is carefully formed by
grinding the block such that the inner structure is revealed.

We concentrate our report here on the use of a spray dried predispersed natural ground calcium carbonate derived from
limestone with a particle size distribution of 91 wt% < 5 µm, 55 wt% < 2 µm, 30 wt% < 1µm. The pigment was equilibrated
in an atmosphere of 100% relative humidity at 23°C prior to tablet formation. Each tablet is formed from 60 g of
homogenised powder carbonate. The homogenising must be carefully controlled and performed under consistent conditions.
The pigment is then compacted in an hydraulic press for 5 minutes at a predetermined pressure. The range of applied press
forces F, the press area A, and the resulting pressures are listed in table 3.
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Cross-sectional area, A = 17.35 cm2  (±0.16)

Applied force F Effective pressure P
/ kN  (±5) / MPa  (±2.7)

100 57.6

200 115.3

300 172.9
400 230.6

450 259.4

Table 3 Conversion table of applied forces to resulting pressures.

Mercury intrusion porosimetry

The mercury intrusion data were obtained from each block sample on a Micromeritics Autopore III porosimeter using the
technique described by Gane, Kettle, Matthews and Ridgway (14) up to an applied pressure of 415 MPa. In this method the
intrusion data are corrected using a spreadsheet-based program Pore-Comp § which uses a blank run correction with the Tait
equation (39) to correct for mercury compressibility and penetrometer expansion effects. A novel aspect of the spreadsheet is
that it can also be used to correct for, or to determine, any compression of the solid phase of the sample which may occur at
high intrusion pressure.

The final corrected data from Pore-Comp are formed into a matrix containing the pore diameter, which was obtained using
the well-known Laplace equation, the corresponding percentile pore volume and the intrusion volume in cm3/g. These then
form the input data for the Pore-Cor model software which simulates the three-dimensional void space structures matching
the experimental percolation characteristics and porosity using the description of pore networks involving pores and access
throats - the simulation match is seen to be quite acceptable from the correlations shown in Fig. 5 and Fig. 6.

0

20

40

60

80

100

0.001 0.01 0.1 1 10
diameter / µm

experimental

simulated

intruded Hg volume / %

Fig. 5 Experimental and simulated percentile mercury intrusion volume from a tablet consolidated at 57.6 MPa.

                                                                
§ Pore-Comp is a program software name of the Porous Media Research Group at the University of Plymouth, U.K.
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Fig. 6 Experimental and simulated 50 % mercury intrusion data show that the mean pore diameter (and porosity)
decrease as a function of increasing sample formation pressure.

We also see in Fig. 6 that the intrusion diameter is not necessarily a smooth function of sample compaction pressure neither
in the experimental nor in the corresponding simulated curves where the slight deviation in the experimental curve is
somewhat more pronounced by the simulation attempting to match percolation data. At this stage the significance of the
simulated discontinuity is not further investigated as the following discussion suggests that the model requires modification
rather than it providing insight into this phenomenon. It is on this basis that the following analyses were made considering
experimental porosity as the independent variable and not external sample compression.

SUPER SOURCE SORPTION

The super source imbibition method is used as a simple porosity method to sample the imbibition void volume. The amount
of liquid which can be taken up just by the capillarity of the porous system is measured without the influence of an external
intrusion pressure. If a liquid were totally non-wetting then no liquid would be absorbed. The liquid is present in abundance
and the sample small enough so that the differential between gravity and capillary pressure is negligible. Typically, a sample
size of about 1 cm3 is made by cleaving a pre-formed pigment tablet into approximately usable sized pieces with the help of a
gentle tapping and cutting with a very sharp knife. The edges are honed with a sample grinding machine and a medium grit
paper at 200 rpm. This finishing technique effectively removes artefacts that might have arisen during the sample breaking.
The samples are weighed, labelled and put in a shallow glass dish which in turn is placed in a larger outer dish. The inner
dish is filled with the fluid under investigation taking care to avoid splashes and false wetting of the sample. The filling
height is just sufficient to ensure that every sample is in contact with the fluid - too high a fluid level can lead to trapped air in
the samples and this must be stringently avoided. The dish is fitted with an overlip cover and the outer dish carefully filled
with distilled water until it reaches the cover to give a complete vapour seal.

After complete soaking of the compressed sample block - often accompanied by a colour intensity change because of the
reduced light scattering at the inter-particle boundaries - the sample is removed, superficially dried with a tissue and
immediately weighed. When using the highly volatile solvents a very fast action is needed to avoid evaporative losses!

The volume of the sample is also determined in its soaked condition on an Archimedes balance. We saw that a polar
displacement liquid led to a rapid disintegration of the sample. It is suspected that the polar fluid is absorbed faster then the
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extrusion capability of the non-polar fluid. Therefore, to ensure that no further pore access is inadvertently sampled by the
displacement fluid, only a non-polar liquid can be used. We used kerosene (density ρkerosene). The outer volume of the sample,
Vsample , can be calculated:

V   
apparent sample mass in kerosene

sample
kerosene

=
ρ

(eq. 2)

To minimise the unavoidable errors due to evaporation and loss of small particles at the edges, every compaction level
measurement was performed in triplicate.

A second independent form of volume can be obtained with this method so that by combining the Archimedes soaked
volume, Vsample , (the outer volume of the sample) and the preweighed (M sample) filled sample skeletal volume, Vskeleton  , the
internal pore volume, Vpore, can be calculated.

Archimedes
sample

skeletonsample
pore

 = 
V

V - V 100
  % V φ








= (eq. 3)

where

carbonate calcium

sample
skeleton

M
  V
ρ

= (eq. 4)

and ρ calcium carbonate is the assumed density of solid crystalline pigment. The absorbed mass of fluid, M fluid  , further gives the
volume of pores accessed by the fluid of volume Vfluid knowing the fluid density ρ fluid  ,

penetratedsample

fluid

penetrated
  =  

V

V  100
   % V φ= (eq. 5)

This last parameter, Vpenetrated , is compared with the value of Vpore to determine the pore volume sampled by the imbibed fluid
compared with the available pore volume.

In general, the porosity φArchimedes was found to be in good accordance with imbibition volume φpenetrated for the test liquids.
Mercury porosity also matches these findings (Fig. 7). [Note that the deviation of the last data point is unexplained and is
assumed to be an artefact as the mercury intrusion measurement could not be repeated due to limited sample quantities.]
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Fig. 7 Comparison of φpenetrated for polar fluids, φArchimedes , and mercury porosimetry φHg

The complete set of penetrated (super source imbibed) porosities for all the liquids tested, as shown in Fig. 8, including water
at two arbitrarily chosen porosities, is in direct correlation with the experimentally derived porosities over the sample
compression range. We see that in the case of super source absorption, therefore, there is little or no differentiation between
the case of apolar and polar liquids between the actual penetrated pore volume and the experimentally defined total available
pore volumes.

15.00
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30.00

35.00

40.00

15.00 20.00 25.00 30.00 35.00

porosity  /%

Ethylenglycol

Glycerol

Linseed oil

Nonane

Squalane

Toluene

Water

volume of imbibed liquid / volume of sample /%

Fig. 8 One-to-one correlation of imbibed liquid volume with porosity for both the polar and apolar fluids as
determined from the generalised correspondence shown in Fig. 7, including water at two arbitrarily chosen
porosities.

These results** mirror the findings reported by Abrams et al. (12) and Leskinen (24), who found a good agreement between
void volumes measured by oil absorption and mercury porosimetry.

As we discuss later, this total saturation effect as seen by super source is in marked contrast with the situation when the
volume of liquid to be imbibed is limited in respect to the available pore volume of the sample, i.e. in the application of a

                                                                
** These findings have been revised subsequent to the Proceedings of the Tappi Advanced Coating Fundamentals Symposium 1999 (43).
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droplet or where the layer of fluid, such as contained in an ink layer, has insufficient volume to lead to saturation equilibrium
of the sample.

DROPLET SORPTION - a discontinuous effect of compression on droplet penetration

This method is a direct approach to simulate on a macro-scale what is happening when a limited amount of dyed liquid is
contacted upon a porous surface. Surface spreading acts in competition to the imbibition into the capillaries.

Selecting a suitable dye

Different aqueous dyes have been investigated for their suitability as an indicator for the liquid front. For this reason an
experiment was made as described in the super source method in which the base surface of the sample block was brought into
contact with underlying drops of different dyes to check the aqueous chromatographic behaviour of different dye molecules
and ions through the slightly anionically dispersed calcium carbonate surface network.

All dyes with a cationic charge showed a strong adsorption to the calcium carbonate surface. This indicates that the ionic
forces (Coulomb forces) contribute the strongest part of the adhesion force and is in agreement with findings covering ink jet
dye adsorbing mechanisms (40). Acid dye molecules have a significantly weaker adhesion mechanism in which it is assumed
that the COOH-groups probably interact with free surface of the Calcium Carbonate. Dyes with an anionic colorant revealed
no adsorption onto the slightly anionically dispersed calcium carbonate surface. Therefore, we chose
Aluminiumphthalocyanine-sodiumsulphonate as dye for our droplet test. The surface tension of the as-used solution of 1%
was determined as 63 mN/m. An example of differential dye adsorption is shown in Pic. 1.

Pic. 1 The picture displays the cross-section view under the fluorescence microscope of the dyed tablet space of a
blend of equal amounts of Rhodamin B (retarded) and Aluminiumphthalocyanine-sodiumsulphonate
(advanced) and shows dramatically the chromatography effect. Magnification 50x.
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Attempts to stain apolar solvents displayed a major problem because the interaction of a dye molecule with an alkane seemed
always weaker than its affinity to a pigment surface which led immediately to adsorption and therefore to chromatographic
separation of liquid and dye. For this reason we confined our investigation of absorption at this stage to aqueous systems.

Droplet application method

A droplet of 5 µl of liquid is formed at the tip of a gas-chromatic syringe. The drop is then carefully brought near to the
surface of the tablet. When the drop touches the surface it is pulled by adhesion forces toward and onto the tablet surface.
Every tablet is tested with at least 3 droplets - most of the experiments were made in quintuplicate. The tablet now with the
surface droplet stains is placed on a normal Desktop Publishing Scanner (UMAX Powerlook II) and scanned with a
resolution of 1400 dpi.

The spot shape or “roundness” is monitored as a form-factor which is calculated as the ratio of the minimum dimension to
that of the maximum, i.e. diametermin/diametermax , and gives us information about the absorbed sample surface spread
uniformity.

After equilibration for 24 h each sample dot on the compressed pigment tablet is subsequently ground in such a way that the
cross section of the drop penetration at its largest lateral expansion could be scanned. With the help of an image analysis
software package (KS 400, Kontron Electronic GmbH) the relevant parameters of surface spread area, shape, penetration
cross-sectional area and penetration depth can be determined.

Obtaining a smooth surface and uniform spread

To check the influence of the surface roughness, a series of 4 tablets, each formed under a 100 kN press force, were surface
ground in an automated grinding machine (Jean Wirtz, Phoenix 4000) with 4 different grinding papers: 60, 320, 1200, 2400
grit. The following graph (Fig. 9) shows the influence of the coarser grind paper grades on directional wetting and non
uniformity due to surface scratches as illustrated by the example in Pic. 2.

0.5

0.6

0.7

0.8

0.9

1.0

0 600 1200 1800 2400 3000

Water

Glycerol

Nonane

Squalane

shape factor

grinding paper grit

Fig. 9 With grit 1200, polished surfaces show maximum shape factor which means maximum roundness/uni-
formity of the droplet stain.

For all samples and all measured dots quoted here, the shape factor was 0.93 ± 0.01 which indicated that we had eliminated
directionality and that pore access distribution and surface energy continuity are within usable limits.
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Pic. 2 Different stained liquids show strong influence of surface scratches (ground with 60 grit paper).

The humidity of the tablets also proved to be a very important factor. In the extreme case of a water-presoaked tablet, (Pic.
3), a drop of aqueous dye spreads to a large irregular dot (diameter > 10 mm) at very low penetration depth (< 0.5 mm). On
the contrary an oven dried tablet (150 °C, 24 h) showed a higher surface wetting contact angle which resulted in a smaller
dyed area and deeper penetration. We might explain this by the amount of hygroscopically adsorbed water normally present
on the polyacrylate-based dispersant. The dispersant polymer requires the water for sufficient hydration to be electrostatically
active and thus hydrophilic. It is known that if the water is evaporated by the influence of heat the polymer shrinks and covers
much less particle surface.

Pic. 3 Super source water-soaked tablet shows a blurred dyed droplet front.
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For this study we decided to work under realistic climatic and humidity conditions such that, after consolidation, the tablets
were equilibrated at 23 °C and 50 % relative humidity for more than 48 hours to a measured moisture content of 0.4 % to
0.8 %.

Observations and results

The process of primary absorption was generally so fast that no contact angle measurement was made. A second outer area of
sub-surface spread was subsequently observed caused by internal horizontal capillary forces within the volume of the
structure. This led to a ring of lighter colour around the initial spreading area when observed from above (Pic. 4). This
fundamental observation told us that, in general, our surface structure must be also representative of the internal volume
structure and had not been altered chemically or physically to create spread without a corresponding isometric imbibition.

Pic. 4 Droplet dots on tablet surface.

Pic. 5 Droplet dots viewed in cross-section after grinding.

The ratio between surface spread and absorption was calculated as the ratio of the mean surface diameter: maximum
penetration depth (Pic. 5). Therefore, a high ratio means surface spread is favoured over penetration, and vice versa.
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Fig. 10 Ratio of surface diameter to maximum penetration depth of a droplet shown as a function of the mercury
porosity as measured from the identical series of compressed tablets.

Fig. 10 shows a transition in this ratio which is only consistent with the presence of unfilled voids. The individual penetration
data indicate that there is an anomalously large penetration depth occurring as porosity increases. If all pores were filled (or
remained filled) then the penetration depth of a highly porous structure should be less than that of a highly compressed
structure. Since we are using a polar liquid (water) which we know from the super source data can access all pores, we must
assume that any unfilled pores within the network should at least be surface wetted either by filling and subsequent draining
or by diffusional adsorption of the liquid front.

To model this deviation from complete pore filling/drainage, a simulation program was written calculating approximate
dimensions of rotationally symmetrical spheroidal segment volumes, Vsimdyed , using parameters obtained from the
corresponding image analysis data of the droplet test and contrasting them to a theoretical dyed volume, Vtheodyed . By
considering the applied volume of ink and the tablet porosity, the degree of unfilled pores can be detected.

r = radius on surface

b = radius of spheroid2

a = radius of spheroid1

h = height of segment

a

h

b

r

d
d = penetration depth

Fig. 11 Spheroidal approximation of the penetration volume.

The simulated penetration volume, Vsimdyed , is calculated assuming the volume can be considered as part of a rotationally
symmetrical spheroid having the two axes a and b,

V   4 

3
a b -   h

6
 3 r  +  hsimdyed

2 2 2= 





π π
(eq. 6)

where the volume, Vspheroid , for a complete spheroid would be
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 4
  Vspheroid

π
= (eq. 7)

and the segment outside the penetration volume, Vsimdyed  , is subtracted as

V    h

6
 3 r  +  hsegment

2 2= 





π
(eq. 8)

The values for the spheroid radii, a, b, the surface radius, r, and the total penetration depth, d, are provided by the image
analysing system and the height of the outer segment, h, is calculated using

h  2b -  d= (eq. 9)

Further, a theoretical volume, Vtheodyed  , for the applied droplet within the structure is calculated as

V   
100 V

theodyed
applied ink

Hg
=

φ
(eq. 10)

Thus, comparing the two volumes Vsimdyed  and Vtheodyed  we see that the observed value is always far greater than the range where
pores are simply filled with liquid (Fig. 12).
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Fig. 12 The comparison of Vsimdyed  and Vtheodyed , expressed as difference (Vsimdyed-Vtheodyed ), shows a marked transition as
a function of the mercury porosity.

Pore-Cor modelling of the transition phenomenon

In the first instant after the droplet touches the surface a competition takes place between surface spread and capillary
absorption forces. During this period super source conditions are momentarily present. In our case with the polar aqueous
solution, we would have expected nearly complete pore filling should occur at this stage displacing air in the pore network.
Either these assumed saturation conditions do not prevail during the short timescale initial absorption dynamics or, later,
there may be a distinction between either locally different pore-wall wetting or adhesion, or through draining of larger pores
into smaller pores or throats replacing liquid once again with air (provided the access to air is still ensured) or a potential
meniscus fracture/retreat associated with strong film flow/wall wetting in a divergent pore, or a combination of all these
possibilities.
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In a natural polydisperse pore network with a multiplicity of geometrical configurations and irregularities this transition
would not manifest itself as a sharp discontinuity in the penetration parameters but rather as a softer trend. However, it is
possible to imagine that a complex combination of absolute pore diameter, pore-to-throat diameter ratio and connected throat
void volume differential determines the competitive filling or drainage level of pores through connected throats.

Fig. 13 Schematic showing the balance between total pore filling and either excluded pores or potential pore
drainage/side-wall wetting.

At equilibrium, the competitive capillarity of fine versus large pores in a drainage model can be studied by the eccentricity or
skew of the pore and throat diameters using the computational Pore-Cor. As an example, we include here the calculated
parameters for the structures analysed in Fig. 6 as determined by Pore-Cor.

porosity (%) 19.26 21.69 22.14 24.31 26.77 28.02 28.7
dmin (µm) 0.004 0.004 0.004 0.004 0.004 0.004 0.004
dmax (µm) 1.21 1.21 1.21 1.21 1.22 1.22 1.21
pore skew 1.1 1.1 1.0 1.0 1.2 1.1 1.0
connectivity 3.5 3.4 3.2 3.3 3.4 3.4 3.2
throat skew 1.10 1.01 0.59 0.73 0.89 0.71 0.11
permeability (mD) 0.000307 0.000586 0.00145 0.00156 0.00122 0.00277 0.00915
tortuosity Q(1) 2.9 2.6 3.2 2.6 2.1 2.1 3.3
median 3.7 2.7 3.4 2.9 2.6 2.5 3.7
Q(3) 3.7 3.9 4.2 4.0 4.2 3 4.3
no of tortuosity runs 11 18 12 24 18 18 22
simulated d50 (µm) 0.078 0.086 0.13 0.115 0.102 0.133 0.201
experimental d50 (µm) 0.0814 0.0948 0.13 0.141 0.116 0.129 0.214
bulk density (g/cm3) 2.18 2.14 2.07 2.02 2.00 1.97 1.87
skeletal density (g/cm3) 2.74 2.81 2.72 2.72 2.76 2.80 2.72
total intruded volume

(cm3/g)
0.0942 0.1113 0.1153 0.127 0.1382 0.1505 0.1669

Table 4 Calculated parameters by Pore-Cor, showing the increase in throat skew as consolidation pressure
increases.

volume dyed
space

pressure

mean pore diameter, porosity

pores drained

pores filled
with liquid

transition due to
multi disperse pore
diameters
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Scale: large bar  6.4 µm
           small bar 1.28 µm

Fig. 14 Unit cell of a tablet consolidated at 57.6 MPa having a porosity of 28.7%

Fig. 14 shows a Pore-Cor model structure involving cubic pores and cylindrical throats. Since this porous structure has two
size distribution parameters (Fig. 15), i.e. that of the pore sizes and that of the throats (skew), where the maximum throat
diameter is limited to the size of the connected pore, we can search for discontinuities in the parameters which might
correspond to the discontinuous sorptive behaviour. As can be seen in table 4, there is a continuous increase in throat skew
but this alone cannot describe the observed sorptive discontinuity based on traditional criteria.
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throats
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Fig. 15 Pore and throat diameter distribution for the structure shown in Fig. 14. (The percentage number represents
the occurrence of the corresponding diameter).
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Further developments of Pore-Cor can now account for diverging and converging throat geometries in association with
surface energy which can be used to differentiate polar and apolar super source data in respect of unaccessed pore volume. In
a final steady state development, a correspondence is sought between wall-wetting of certain pores to reveal an unfilled pore
volume consistent with the observations from droplet absorption. The analytical details of this work together with time-
dependent absorption studies will be the subject of future publications.

CONCLUSIONS AND IMPLICATIONS

A novel way of studying the comparative absorption under either super source saturation conditions or limited volume
droplet imbibition has been presented. In the investigated pore structures, defined by using predispersed coating pigment
tablets formed under differing compressions, transitional conditions were observed distinguishing the often studied saturation
absorption from the more realistic limited volume case. These are summarised as:

1. In super source imbibition, corresponding to the situation of abundant fluid at all stages of absorption, the progress to
complete saturation of the pore volume is independent of the range of fluid types studied and corresponds to the fully
corrected mercury porosimetry values.

2. A transition/discontinuity was seen in the case of limited volume droplet imbibition where the ratio of droplet surface
spread compared with absorption showed a marked deviation from complete pore filling as a function of porosity. This
means that under differential compressions a coating structure can create strongly varying absorption characteristics likely
to affect print gloss and density without there being any changes in coating composition. This we suggest may be one of
the dominant causes for print mottle in modern coated papers and supports the previous analysis of coating distribution
and correlatable roughness given by Gane (2).

3. Associated with this transitional spread phenomenon is a further second potential discontinuity in coating layer absorption
which may be related to the various stages of liquid content of pores. With increasing pore diameter a transition involving
a mechanism of pore structure differentiation either between large and fine pores on a short timescale and/or pore draining
after longer times may occur. This condition is further dependent on the pore-to-throat diameter ratio and the available
volume of the smaller voids. Conversely, strongly divergent pores associated with highly porous structures may lead to a
potential imbibition termination and leave some pores competitively unfilled. In the offset process where different
volumes of contrasting fluids are used the discrepancy between the droplet volume exclusion case (limited volume) and
the super source saturation effect (abundant volume) may account for differential absorption of fountain solution
compared with ink in that, depending on the volume balance of the fluids and their properties, they may strongly compete
for and access different pore volume.

Controlling the amount of potentially limited or competitive access of oil-based ink vehicles to the coating void structure due
to the limited volume of fluid compared to the volume of coating pores together with the time retarding influence of viscosity
may be a highly relevant factor in guaranteeing the correct balance between good ink acceptance (adhesion (20, 41)) and the
need for long term stability of the ink layer against print rub and post-tack adhesion failure by extended ink tack cycle times
(20).

It will be interesting to see, therefore, if the properties of different liquids can account for the discrepancy between
equilibrium saturation of the pore structure and the exclusion of pore volume associated with limited fluid uptake. For
example, is the polarity or higher viscosity of linseed oil  likely to lead to an important difference compared with non-polar
mineral oil of similar or lower viscosity in determining the printability of vegetable versus mineral oil-based inks in the case
of non-equilibrium saturation? Dempewolf states that mineral oils (and not vegetable oils) are an indispensable component
for slow setting sheet offset inks (42). Our finding that limited volumes of fluids may access a smaller pore volume at critical
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porosity levels could be an explanation for differing imbibition rates or possible extended chromatography/setting of mineral
oil compared with vegetable oil inks.

                                                                
References

1 Engström G., Morin V. and Bin S. L., “Analysis of porosity distribution in coating layers”, Proceedings of the 1997
Tappi Advanced Coating Fundamentals Symposium, Tappi Press, Atlanta, p189-198

2 Gane P., “Mottle and the influence of coating and binder migration”, Paper Technology, PITA April 1989, p34-41

3 Zang Y. H. and Aspler J. S., “Effect of binder content on print density and ink receptivity of coated paper”, Journal of
Pulp and Paper Science, 24(5), 1998, p141-145

4 Sangl R. and Weigl J., “Forschungsbericht Inkjet”, Papiertechnische Stiftung, München

5 Chapman D. M., “Coating structure effects on ink-jet print quality”, Proceedings of the 1997 Tappi Coating
Conference, Tappi Press, Atlanta, p73-93

6 Arnold H., Eisenschmid K. and Kleemann S. G, “Inkjet-Eignung von holzhaltigen Papieren“, Wochenblatt für
Papierfabrikation 123(21), 1995

7 Desjumaux D., Bousfield D. W., Glatter T. P., Donigian D. W., Ishley J. N. and Wise K. J., “Influence of pigment size
on wet ink gloss development”, Journal of pulp and paper science, 24(5), 1998, p150-155

8 Donigian D. W., Ishley J. N. and Wise K. J., “Coating structure and offset printed gloss”, Tappi Journal, 80(5), 1997,
p163-172

9 Plowman N., "Ink tack - part 3: surface measurement", Gr. Arts. Mon. 61(6), 1989, p114
Plowman N., "Ink tack - part 4: blanket release forces", Gr. Arts. Mon. 61(8), 1989, p133

10 Concannon P. W. and Wilson L. A., "A method for measuring tack build of offset printing inks on caoted paper",
TAGA Proc. 44, Vancouver, 1992

11 Piccolet M., Piette P., Morin V. and Le Nest J. F., “Competition between gravure ink penetration and spreading on
LWC coated papers”, Proceedings of the 1998 Tappi Coating/Papermakers Conference New Orleans, Tappi Press
Atlanta, p185-192

12 Abrams L., Favorite W., Capano J. and Johnson R. W., “Using mercury porosimetry to characterize coating pore
structure and its relevance to optical performance” , Proceedings of the 1996 Tappi Coating Conference, Tappi Press
Atlanta, p185-192

13 Larrondo L. E., St-Amour S. and Monasterios C., “The porous structure of paper coatings - a comparison of mercury
porosimetry and stain imbibition methods of measurement“, Proceedings of the 1995 Tappi Coating Conference, Tappi
Press, Atlanta, p79-93

14 Gane P., Kettle J., Matthews P. and Ridgway C., “Void space of compressible polymer spheres and consolidated
calcium carbonate paper coating formulations”, Ind. Eng. Chem. Res. 1996, 35, p1753-1764



- 21 / 22 -

                                                                                                                                                                                                                                

15 Bester P., Gerischer G., and Reinhardt B., “Studium der Oberflächenveredlung von Spezialpapier mittels filmbildender
Substanzen”, Wochenblatt für Papierfabrikation, 11, 1994, p468-472

16 Lundqvist A., “Surface energy characterisation of cellulosic fibres and pigment coatings by inverse gas
chromatography (IGC)”, Licentiate Thesis, STFI, Stockholm, 1996

17 Adamson A. W., “Physical Chemistry of Surfaces”, 5th Edition, A. Wyley Interscience Publication, New York (1990)

18 Holysz L. and Chibowski E,  ”Surface free energy components of calcium carbonate and their changes due to radio
frequency electric field treatment”, Journal of Colloid and Interface Science 164, p245-251 (1994)

19 Triantafillopoulos N., Lee D. and Philp D., “Einfluss des Strichs auf das Wegschlagen beim Offsetdruck”, Wochenblatt
für Papierfabrikation, 4, 1997, p138-147

20 Gane P. A. C. and Seyler E. N., “Some novel aspects of ink/paper interactions in offset printing”, Proceedings of the
1994 International Printing and Graphic Arts Conference, Halifax, Nova Scotia, October 1994, CPPA/TAPPI, Tappi
Press, Atlanta, p209-228

21 Järnström L., Lason L. and Rigdahl M., “Strichstruktur und optische Eigenschaften gestrichener Papiere”, Wochenblatt
für Papierfabrikation, 17, 1996, p736-741

22 Larrondo L. E. and St-Amour S., “A method for measuring the void fraction of coatings on porous substrates”, J. Pulp
and Paper Sci., Aug. 1994

23 Lepoutre P., Rezanovich A., “Optical properties and structure of clay-latex coatings“, Tappi 60(11), 86 (1977).

24 Leskinen A. M., “Layer structure in model coatings“, Tappi 70(12), p101-106 (1987)

25 Ranger A. E., “Coating pore structure analysis by fluid penetration and permeation“, BPBIF, Cambridge Symp., „The
role of fundamental research in papermaking“, 685, Sept. 1981.

26 Kettle J. P. and Matthews G. P., “Computer modelling of the pore structure and permeability of pigmented coatings“,
Advanced Coating Fundamentals TAPPI Notes, 1993, p121-126

27 Unertl W. N., “Wetting and spreading of styrene-butadiene latexes on calcite“, Langmuir 1998, 14, p2201-2207

28 Sigg L., Goss K-U., Haderlein S., Harms H., Hug S. J., Ludwig C., “Sorption phenomena at environmental solid
surfaces“, Chimia 51 (1997), p893-899

29 Stipp S. L. S, Gutmannsbauer W. and Lehmann T., ”The dynamic nature of calcite surfaces in air”, American
Mineralogist, Volume 81, p1-8, 1996

30 Kent H. J. and Lyne M. B., “Influence of paper morphology on short term wetting and sorption phenomena“, BPBIF
Fundamental Research Symposium Cambridge, 895, Sept. 1989

31 Klemm K. W., “Nachwachsende Rohstoffe in Offsetfarben”, K+E Druckfarben PRINT, 14/15 (1994)

32 Hanke K., “Oekologische Farbsysteme für den Bogenoffsetdruck”, Deutscher Drucker 12/28(3), w30, 1996



- 22 / 22 -

                                                                                                                                                                                                                                

33 Siegrist J., “Sojaöl, Wunderwaffe für die europäischen Offsetdruckfarben”, K+E Druckfarben PRINT 11 (1994)

34 Kittel H., “Lehrbuch der Lacke und Beschichtungen”, Band I, Teil3, Verlag W. A. Colomb, Berlin (1974)

35 Goldschmidt A., Hantschke B., Knappe E., and Vock G-F., “Glasurit-Handbuch, Lacke und Farben”, 11. Auflage, Curt
R. Vincentz Verlag, Hannover (1984)

36 Pennanen M., “Methods for producing and testing tablets of dry pigments and coating colours”, Research report, Åbo
Akademi, Turku, OMYA, Oftringen, 1996

37 Ridgway C. J., Ridgway K. and Matthews G. P., “Modelling of the void space of tablets compacted over a range of
pressures”, J. Pharm. Pharmacol. 49, (1997), p377

38 Briscoe B. J. and Rough S. L., “Effects of wall friction in powder compaction”, Colloids and Surfaces A., 137, p103-
116, (1998)

39 Cook R. A. and Hover K. C., “Mercury porosimetry of cement-based materials and associated correction factors“, ACI
Meter. J. March/April, p152-161 1993

40 Sangl R. and Weigl J., “Cost-effective production of paper suitable for ink-jet printing at high production speeds”,
Research Report, Papiertechnische Stiftung, München

41 Haenen J. P., “Ink-paper interaction, a new analysis for the control of back trap mottling”, Proceedings of the PTS
Coating Symposium 1999, Munich, 38-1, 14

42 Dempewolf E., “Für Oekowerbung zu schade: Druckfarben mit nachwachsenden Rohstoffen”, Polygraph, Treffpunkt
Druckindustrie, 15/16 (1994)

43 Gane P.A.C., Schoelkopf J., Spielmann D.C., Matthews G.P. and Ridgway C.J., “Observing fluid transport into porous
coating structures: some novel findings”, Proceedings of the Tappi Advanced Coating Fundamentals Symposium,
Toronto, 1999, Tappi Press, Atlanta, 213-236.


